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Canvas LTI Student Climate Dashboard

Problem statement:
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resonance can help instructors when planning for subsequent [BRpol ; |
semesters. However, gathering data and building a graph is an AT Average
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Solution:

Provide instructors with a software tool to automate the most

time-consuming aspects of the journey-mapping process (data Intended Users & Uses

gathering & visualization). Users are provided with an interactive Intended Users: Course Instructors and Co-Instructors
charting tool, and have the ability to aggregate student feedback Intended Uses:
and statistics from Canvas. Users can also customize how this data - Chart student resonance as course progresses.
1s interpreted and displayed. - Find common points of student feedback and course experience
(student resonance).
High Level Design Requirements - Use findings to shape approach to course planning.

Functional

- The system should be able to create Journey Map from data. Product Main Interface Screen Shots

- The system should automatically categorize the students into Canvas LTI Student Climate Dashboard  CLASS: CPRE 230 ———
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- Professor should be able to view class Journey Map. o515
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similar groups.

- Professors should be able to view journey maps with only a

specific set of variables taken into account.
Non-Functional
- Data integration should be modular for future extensions.
- Student data should not be accessible by other students.

- The system should be easily extensible.
Graph Manipulation
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- Services are containerized for universal®™ compatibility
- Kubernetes handles networking / service availability.

Design Approach System Diagram

Front End (Red): Requests data from the data analysis pipeline
and displays it in an interactive fashion for the user.

Data Analysis Pipeline (Purple): Serves the front end’s requests ::\:,_ R { —
by fetching the necessary data from the API wrapper and | "
processing 1t based on user preferences specified on the GUI.

API Wrapper (Green- Left): Hosts endpoints for the data ) l
analysis pipeline. Requests data from Canvas, which returns both I s |

relevant and extraneous data. The API Wrapper filters out i
unnecessary data and sends back only what the pipeline needs.

Local Database Interface

Data Storage (Green - Right): Data caching on API endpoints for
speed / minimizing API calls to Canvas as well as storage and
endpoints for all non-canvas data that the application needs to run.
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, j Technical Details

- Application Infrastructure: - Communication:

v - Containerized - Protobufs (Green)
Microservices - JSON (Red)
Testing & Standards - Kubernetes Cluster - TCP/IP (Blue)
- Testing Container Management
- Full integration testing between all tools. The Data analysis - MySQL Database - Programming Languages
pipeline , frontend-ui, and the .NET core canvas API wrapper. - Python
- Using HTTP request tools such as Postman and Insomnia on - Technologies Leveraged: - C#
all endpoints for our application. - Docker - Javascript
- Standards - Kubernetes
- Storage of sensitive tokens in Kubernetes Secrets. - .NET Core - Resources Used
- Pagination & Caching for data-heavy API Endpoints. - Flask - Virtual Machine from ETG
- RFC HTTP Standardized Response Status Codes - Servicestack - Mock Canvas Course



