Senior Design Poster Presentation
IOWA STATE UNIVERSITY =1l 200"

Department of Software Engineering SDDEC21-19

Team Members: Andrew Dort, Emma Paskey, Joshua Slagle, Kira Pierce, Zach Borchard
Advisor: Nicholas Fila
Client: Henry Duwe

Canvas LTI Student Climate Dashboard

Problem statement:

Assignment Grade i
WAchlevement/‘;: Resonance

Instructors currently create journey maps to chart student K

. . . L. _ Assignment Weights 7
resonance with the goal of understanding and identifying shared “
experiences among students within a course. Gauging student Canvas AP| | TedResponse (.

. . W Numerical Response enfime ‘ Frontend

resonance can help instructors when planning for subsequent [BRpol ; |
semesters. However, gathering data and building a graph is an AT Average
. . . L. . . _ < Engagement Resonance
intensive, subjective, and time consuming process. TuminRate

Solution:

Provide instructors with a software tool to automate the most

time-consuming aspects of the journey-mapping process (data Intended Users & Uses

gathering & visualization). Users are provided with an interactive Intended Users: Course Instructors and Co-Instructors
charting tool, and have the ability to aggregate student feedback Intended Uses:
and statistics from Canvas. Users can also customize how this data - Chart student resonance as course progresses.
1s interpreted and displayed. - Find common points of student feedback and course experience
(student resonance).
High Level Design Requirements - Use findings to shape approach to course planning.

Functional

- The system should be able to create Journey Map from data. Product Main Interface Screen Shots

- The system should automatically categorize the students into Canvas LTI Student Climate Dashboard CLASS: CPRE 230 ———

Students

572964
576539

- Professor should be able to view class Journey Map. o515

1658644

Student Resonance

similar groups.

- Professors should be able to view journey maps with only a

specific set of variables taken into account.
Non-Functional
- Data integration should be modular for future extensions.
- Student data should not be accessible by other students.

- The system should be easily extensible.
Graph Manipulation

Operating EnVironment Recalculate Student Resonance
Assignment Weights Resonance Weights

- Services are containerized for universal®™ compatibility
- Kubernetes handles networking / service availability.

Design Approach System Diagram

Front End (Red): Requests data from the data analysis pipeline
and displays it in an interactive fashion for the user.

Data Analysis Pipeline (Purple): Serves the front end’s requests ::\:,_ R { —
by fetching the necessary data from the API wrapper and | "
processing 1t based on user preferences specified on the GUI.

API Wrapper (Green- Left): Hosts endpoints for the data) l
analysis pipeline. Requests data from Canvas, which returns both I s |

relevant and extraneous data. The API Wrapper filters out i
unnecessary data and sends back only what the pipeline needs.

Local Database Interface

Data Storage (Green - Right): Data caching on API endpoints for
speed / minimizing API calls to Canvas as well as storage and
endpoints for all non-canvas data that the application needs to run.

Concept Sketches

Non Student
Canvas Application
Cache Data

Frontend

N rd

N

GraphEndpoint
Clustering - f Achievement
Endpoint Scorer
4 % 3 >, ' N

Resonance Engagement Sentiment
Scorer Scorer Scorer
> \ -

A4 A 4
Local Data Online Data
Retrieval Retrieval
Modules Modules

Data Interface Layer

v

Journey Map Creator |_

Data
Processing

, j Technical Details

- Application Infrastructure: - Communication:

v - Containerized - Protobufs (Green)
Microservices - JSON (Red)
Testing & Standards - Kubernetes Cluster - TCP/IP (Blue)
- Testing Container Management
- Full integration testing between all tools. The Data analysis - MySQL Database - Programming Languages
pipeline , frontend-ui, and the .NET core canvas API wrapper. - Python
- Using HTTP request tools such as Postman and Insomnia on - Technologies Leveraged: - C#
all endpoints for our application. - Docker - Javascript
- Standards - Kubernetes
- Storage of sensitive tokens in Kubernetes Secrets. - .NET Core - Resources Used
- Pagination & Caching for data-heavy API Endpoints. - Flask - Virtual Machine from ETG
- RFC HTTP Standardized Response Status Codes - Servicestack - Mock Canvas Course

